Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.952
Filtrar
1.
Microb Pathog ; 190: 106642, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599551

RESUMEN

The intestinal and respiratory tracts of healthy individuals serve as habitats for a diverse array of microorganisms, among which Klebsiella oxytoca holds significance as a causative agent in numerous community- and hospital-acquired infections, often manifesting in polymicrobial contexts. In specific circumstances, K. oxytoca, alongside other constituents of the gut microbiota, undergoes translocation to distinct physiological niches. In these new environments, it engages in close interactions with other microbial community members. As this interaction may progress to co-infection where the virulence of involved pathogens may be promoted and enhance disease severity, we investigated how K. oxytoca affects the adhesion of commonly co-isolated bacteria and vice versa during co-incubation of different biotic and abiotic surfaces. Co-incubation was beneficial for the adhesion of at least one of the two co-cultured strains. K. oxytoca enhanced the adhesion of other enterobacteria strains to polystyrene and adhered more efficiently to bladder or lung epithelial cell lines in the presence of most enterobacteria strains and S. aureus. This effect was accompanied by bacterial coaggregation mediated by carbohydrate-protein interactions occurring between bacteria. These interactions occur only in sessile, but not planktonic populations, and depend on the features of the surface. The data are of particular importance for the risk assessment of the urinary and respiratory tract infections caused by K. oxytoca, including those device-associated. In this paper, we present the first report on K. oxytoca ability to acquire increased adhesive capacities on epithelial cells through interactions with common causal agents of urinary and respiratory tract infections.


Asunto(s)
Adhesión Bacteriana , Células Epiteliales , Infecciones por Klebsiella , Klebsiella oxytoca , Pulmón , Vejiga Urinaria , Klebsiella oxytoca/fisiología , Humanos , Células Epiteliales/microbiología , Pulmón/microbiología , Infecciones por Klebsiella/microbiología , Vejiga Urinaria/microbiología , Staphylococcus aureus/fisiología , Staphylococcus aureus/patogenicidad , Técnicas de Cocultivo , Coinfección/microbiología , Línea Celular , Interacciones Microbianas , Infecciones Oportunistas/microbiología , Infecciones del Sistema Respiratorio/microbiología , Virulencia
2.
J Mol Biol ; 436(4): 168415, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38135177

RESUMEN

Staphylococcus aureus is an important human pathogen, and the prevalence of antibiotic resistance is a major public health concern. The evolution of pathogenicity and resistance in S. aureus often involves acquisition of mobile genetic elements (MGEs). Bacteriophages play an especially important role, since transduction represents the main mechanism for horizontal gene transfer. S. aureus pathogenicity islands (SaPIs), including SaPI1, are MGEs that carry genes encoding virulence factors, and are mobilized at high frequency through interactions with specific "helper" bacteriophages, such as 80α, leading to packaging of the SaPI genomes into virions made from structural proteins supplied by the helper. Among these structural proteins is the portal protein, which forms a ring-like portal at a fivefold vertex of the capsid, through which the DNA is packaged during virion assembly and ejected upon infection of the host. We have used high-resolution cryo-electron microscopy to determine structures of the S. aureus bacteriophage 80α portal itself, produced by overexpression, and in situ in the empty and full SaPI1 virions, and show how the portal interacts with the capsid. These structures provide a basis for understanding portal and capsid assembly and the conformational changes that occur upon DNA packaging and ejection.


Asunto(s)
Islas Genómicas , Fagos de Staphylococcus , Staphylococcus aureus , Humanos , Proteínas de la Cápside/química , Microscopía por Crioelectrón , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad , Staphylococcus aureus/virología , Fagos de Staphylococcus/genética , Factores de Virulencia/genética , Transducción Genética , Empaquetamiento del ADN , Conformación de Ácido Nucleico
3.
Cell ; 186(24): 5375-5393.e25, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37995657

RESUMEN

Itch is an unpleasant sensation that evokes a desire to scratch. The skin barrier is constantly exposed to microbes and their products. However, the role of microbes in itch generation is unknown. Here, we show that Staphylococcus aureus, a bacterial pathogen associated with itchy skin diseases, directly activates pruriceptor sensory neurons to drive itch. Epicutaneous S. aureus exposure causes robust itch and scratch-induced damage. By testing multiple isogenic bacterial mutants for virulence factors, we identify the S. aureus serine protease V8 as a critical mediator in evoking spontaneous itch and alloknesis. V8 cleaves proteinase-activated receptor 1 (PAR1) on mouse and human sensory neurons. Targeting PAR1 through genetic deficiency, small interfering RNA (siRNA) knockdown, or pharmacological blockade decreases itch and skin damage caused by V8 and S. aureus exposure. Thus, we identify a mechanism of action for a pruritogenic bacterial factor and demonstrate the potential of inhibiting V8-PAR1 signaling to treat itch.


Asunto(s)
Péptido Hidrolasas , Prurito , Receptor PAR-1 , Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Humanos , Ratones , Péptido Hidrolasas/metabolismo , Prurito/microbiología , Receptor PAR-1/metabolismo , Staphylococcus aureus/enzimología , Staphylococcus aureus/patogenicidad , Staphylococcus aureus/fisiología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología
4.
J Biol Chem ; 299(12): 105321, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37802313

RESUMEN

Staphylococcus aureus (S. aureus) is a serious global pathogen that causes a diverse range of invasive diseases. S. aureus utilizes a family of pore-forming toxins, known as bi-component leukocidins, to evade the host immune response and promote infection. Among these is LukAB (leukocidin A/leukocidin B), a toxin that assembles into an octameric ß-barrel pore in the target cell membrane, resulting in host cell death. The established cellular receptor for LukAB is CD11b of the Mac-1 complex. Here, we show that hydrogen voltage-gated channel 1 is also required for the cytotoxicity of all major LukAB variants. We demonstrate that while each receptor is sufficient to recruit LukAB to the plasma membrane, both receptors are required for maximal lytic activity. Why LukAB requires two receptors, and how each of these receptors contributes to pore-formation remains unknown. To begin to resolve this, we performed an alanine scanning mutagenesis screen to identify mutations that allow LukAB to maintain cytotoxicity without CD11b. We discovered 30 mutations primarily localized in the stem domains of LukA and LukB that enable LukAB to exhibit full cytotoxicity in the absence of CD11b. Using crosslinking, electron microscopy, and hydroxyl radical protein footprinting, we show these mutations increase the solvent accessibility of the stem domain, priming LukAB for oligomerization. Together, our data support a model in which CD11b binding unlatches the membrane penetrating stem domains of LukAB, and this change in flexibility promotes toxin oligomerization.


Asunto(s)
Proteínas Bacterianas , Leucocidinas , Staphylococcus aureus , Toxinas Biológicas , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Leucocidinas/genética , Leucocidinas/metabolismo , Leucocidinas/toxicidad , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidad , Toxinas Biológicas/metabolismo , Mutación , Unión Proteica/genética , Dominios Proteicos , Línea Celular , Células CHO , Cricetulus , Animales
5.
Curr Microbiol ; 80(8): 258, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37358668

RESUMEN

Neobavaisoflavone had antimicrobial activities against Gram-positive multidrug-resistant (MDR) bacteria, but the effect of neobavaisoflavone on the virulence and biofilm formation of S. aureus has not been explored. The present study aimed to investigate the possible inhibitory effect of neobavaisoflavone on the biofilm formation and α-toxin activity of S. aureus. Neobavaisoflavone presented strong inhibitory effect on the biofilm formation and α-toxin activity of both methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) strains at 25 µM, but did not affect the growth of S. aureus planktonic cells. Genetic mutations were identified in four coding genes, including cell wall metabolism sensor histidine kinase walK, RNA polymerase sigma factor rpoD, tetR family transcriptional regulator, and a hypothetical protein. The mutation of WalK (K570E) protein was identified and verified in all the neobavaisoflavone-induced mutant S. aureus isolates. The ASN501, LYS504, ILE544 and GLY565 of WalK protein act as hydrogen acceptors to form four hydrogen bonds with neobavaisoflavone by molecular docking analysis, and TRY505 of WalK protein contact with neobavaisoflavone to form a pi-H bond. In conclusion, neobavaisoflavone had excellent inhibitory effect on the biofilm formation and α-toxin activity of S. aureus. The WalK protein might be a potential target of neobavaisoflavone against S. aureus.


Asunto(s)
Toxinas Bacterianas , Biopelículas , Isoflavonas , Staphylococcus aureus , Isoflavonas/farmacología , Biopelículas/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidad , Toxinas Bacterianas/biosíntesis , Antibacterianos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Mutación , Estructura Terciaria de Proteína , Modelos Moleculares , Simulación del Acoplamiento Molecular
6.
Invest Ophthalmol Vis Sci ; 64(5): 5, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37133835

RESUMEN

Purpose: Staphylococcus aureus is an important cause of corneal infections (keratitis). To better understand the virulence mechanisms mediating keratitis, a recent comparative genomics study revealed that a set of secreted enterotoxins were found with higher prevalence among ocular versus non-ocular S. aureus clinical infection isolates, suggesting a key role for these toxins in keratitis. Although well known to cause toxic shock syndrome and S. aureus food poisoning, enterotoxins have not yet been shown to mediate virulence in keratitis. Methods: A set of clinical isolate test strains, including a keratitis isolate that encodes five enterotoxins (sed, sej, sek, seq, ser), its corresponding enterotoxin deletion mutant and complementation strain, a keratitis isolate devoid of enterotoxins, and the non-ocular S. aureus strain USA300 along with its corresponding enterotoxin deletion and complementation strains, were evaluated for cellular adhesion, invasion and cytotoxicity in a primary corneal epithelial model as well as with microscopy. Additionally, strains were evaluated in an in vivo model of keratitis to quantify enterotoxin gene expression and measure disease severity. Results: We demonstrate that, although enterotoxins do not impact bacterial adhesion or invasion, they do elicit direct cytotoxicity in vitro toward corneal epithelial cells. In an in vivo model, sed, sej, sek, seq, ser were found to have variable gene expression across 72 hours of infection and test strains encoding enterotoxins resulted in increased bacterial burden as well as a reduced host cytokine response. Conclusions: Our results support a novel role for staphylococcal enterotoxins in promoting virulence in S. aureus keratitis.


Asunto(s)
Enterotoxinas , Queratitis , Infecciones Estafilocócicas , Staphylococcus aureus , Humanos , Enterotoxinas/genética , Enterotoxinas/metabolismo , Queratitis/virología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad , Virulencia
7.
Genes Genomics ; 45(2): 191-202, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36520268

RESUMEN

BACKGROUND: Staphylococcus aureus is a major human pathogen, that can lead to various community- and hospital-acquired infections. RinA is a transcription activator of S. aureus phage φ 11 involved in phage packaging and virulence gene transfer. However, little is known about the molecular mechanism of RinA in the regulation of virulence. OBJECTIVE: We aimed to explore a novel contribution of RinA in the regulation of virulence and provide a new drug target in the treatment of S. aureus infections. METHODS: The specific functions of RinA in S. aureus were analyzed by the methods of growth curve, real-time quantitative PCR (RT-qPCR), subcellular localization, electrophoretic mobility shift assay (EMSA), infection model of Galleria mellonella larvae and the mouse subcutaneous abscess model. RESULTS: In this study, we demonstrated that RinA is a protein evenly distributed in the cytoplasm of S. aureus, and its deletion could cause the growth defects. RT-qPCR and EMSA determined that rinA could negatively regulate the expression of sarA by directly binding to its promoter, and vice versa. The Galleria mellonella larvae infection and mouse subcutaneous abscess models revealed that the rinA mutant strain exhibited obvious virulence defects. When sarA is knocked out, the virulence of S.aureus had no significantly changes whether rinA is knocked out or not. CONCLUSION: Our fndings demonstrated that phage transcription activator RinA regulates S. aureus virulence by governing sarA expression.


Asunto(s)
Fagos de Staphylococcus , Staphylococcus aureus , Factores de Transcripción , Proteínas Virales , Factores de Virulencia , Animales , Ratones , Absceso , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Staphylococcus aureus/patogenicidad , Staphylococcus aureus/virología , Fagos de Staphylococcus/genética , Fagos de Staphylococcus/metabolismo , Factores de Transcripción/genética , Proteínas Virales/genética , Virulencia/genética , Factores de Virulencia/genética
8.
Environ Pollut ; 314: 120294, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36181932

RESUMEN

Per- and Poly-fluoroalkyl substances (PFAS) are major persistent environmental contaminants. Epidemiological studies have linked PFAS exposures to altered immunity and increased occurrence of infections in children. However, the mechanisms leading to immune susceptibility to bacterial infections remains unclear. To elucidate the mechanism, transcriptional alteration in the Caenorhabditis elegans model caused by a PFAS contaminated environmental water and two reconstituted PFAS solutions were evaluated using RNA-sequencing. PFAS affected the expression of several genes involved in C. elegans immune surveillance to Gram-positive bacteria (cpr-2, tag-38, spp-1, spp-5, clec-7, clec-172). The combined exposure to PFAS and Staphylococcus aureus significantly reduced C. elegans survival and increased intestinal membrane permeability. Furthermore, the growth of S. aureus in the presence of PFAS increased the expression of virulence genes, specifically, the virulence gene regulator saeR and α-hemolysin, hla, which resulted in increased hemolytic activity. The present study demonstrated that PFAS exposure not only increased C. elegans susceptibility to pathogens by reducing host immunity and increasing intestinal membrane permeability, but also increased bacteria virulence. This presents a broader implication for humans and other animals, where environmental contaminants simultaneously reduce host resilience, while, increasing microbial pathogenicity.


Asunto(s)
Caenorhabditis elegans , Fluorocarburos , Staphylococcus aureus , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/inmunología , Caenorhabditis elegans/microbiología , Fluorocarburos/toxicidad , Proteínas Hemolisinas , Inmunidad , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/patogenicidad , Virulencia/genética , Contaminantes Ambientales/toxicidad
9.
BMC Microbiol ; 22(1): 219, 2022 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-36115948

RESUMEN

BACKGROUND: The prevalence of Staphylococcus aureus isolates carrying the Panton-Valentine leukocidin (PVL) gene is higher in Africa (≈50%) compared to Europe (< 5%). The study aimed to measure anti-PVL-antibodies in Africans and Germans in a multi-center study and to test whether detected antibodies can neutralize the cytotoxic effect of PVL on polymorphonuclear leukocytes (PMNs). METHODS: Sera from asymptomatic Africans (n = 22, Nigeria, Gabon) and Caucasians (n = 22, Germany) were used to quantify antibody titers against PVL and α-hemolysin (in arbitrary units [AU]) by ELISA. PMNs from one African and German donor were exposed to 5 nM recombinant PVL to measure the neutralizing effect of serial dilutions of pooled sera from African and Caucasian participants, or donor sera at 0.625 and 2.5% (v/v). RESULTS: Anti-PVL-antibodies were significantly higher in Africans than in Germans (1.9 vs. 0.7 AU, p < 0.0001). The pooled sera from the study participants neutralized the cytotoxic effect of PVL on African and German PMNs in a dose dependent manner. Also, neutralization of PVL on PMNs from the African and German donors had a stronger effect with African sera (half-maximal inhibitory concentration (IC50) = 0.27 and 0.47%, respectively) compared to Caucasian sera (IC50 = 3.51 and 3.59% respectively). CONCLUSION: Africans have higher levels of neutralizing anti-PVL-antibodies. It remains unclear if or at what level these antibodies protect against PVL-related diseases.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Leucocidinas , Neutrófilos , Infecciones Estafilocócicas , Staphylococcus aureus , Anticuerpos Neutralizantes/inmunología , Toxinas Bacterianas/sangre , Toxinas Bacterianas/inmunología , Exotoxinas/sangre , Exotoxinas/inmunología , Alemania/epidemiología , Proteínas Hemolisinas , Humanos , Leucocidinas/sangre , Leucocidinas/inmunología , Neutrófilos/inmunología , Nigeria/epidemiología , Infecciones Estafilocócicas/sangre , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/inmunología , Staphylococcus aureus/patogenicidad
10.
Commun Biol ; 5(1): 910, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-36065015

RESUMEN

Phenol-soluble modulin α (PSMα) is identified as potent virulence factors in Staphylococcus aureus (S. aureus) infections. Very little is known about the role of PSMß which belongs to the same toxin family. Here we compared the role of PSMs in S. aureus-induced septic arthritis in a murine model using three isogenic S. aureus strains differing in the expression of PSMs (Newman, Δpsmα, and Δpsmß). The effects of PSMs on neutrophil NADPH-oxidase activity were determined in vitro. We show that the PSMα activates neutrophils via the formyl peptide receptor (FPR) 2 and reduces their NADPH-oxidase activity in response to the phorbol ester PMA. Despite being a poor neutrophil activator, PSMß has the ability to reduce the neutrophil activating effect of PSMα and to partly reverse the effect of PSMα on the neutrophil response to PMA. Mice infected with S. aureus lacking PSMα had better weight development and lower bacterial burden in the kidneys compared to mice infected with the parental strain, whereas mice infected with bacteria lacking PSMß strain developed more severe septic arthritis accompanied with higher IL-6 and KC. We conclude that PSMα and PSMß play distinct roles in septic arthritis: PSMα aggravates systemic infection, whereas PSMß protects arthritis development.


Asunto(s)
Artritis Infecciosa , Toxinas Bacterianas , Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Artritis Infecciosa/metabolismo , Toxinas Bacterianas/metabolismo , Ratones , NADP/metabolismo , Oxidorreductasas/metabolismo , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidad
11.
Proc Natl Acad Sci U S A ; 119(33): e2202661119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35939668

RESUMEN

In Staphylococcus aureus, virulence is under the control of a quorum sensing (QS) circuit encoded in the accessory gene regulator (agr) genomic locus. Key to this pathogenic behavior is the production and signaling activity of a secreted pheromone, the autoinducing peptide (AIP), generated following the ribosomal synthesis and posttranslational modification of a precursor polypeptide, AgrD, through two discrete cleavage steps. The integral membrane protease AgrB is known to catalyze the first processing event, generating the AIP biosynthetic intermediate, AgrD (1-32) thiolactone. However, the identity of the second protease in this biosynthetic pathway, which removes an N-terminal leader sequence, has remained ambiguous. Here, we show that membrane protease regulator of agr QS (MroQ), an integral membrane protease recently implicated in the agr response, is directly involved in AIP production. Genetic complementation and biochemical experiments reveal that MroQ proteolytic activity is required for AIP biosynthesis in agr specificity group I and group II, but not group III. Notably, as part of this effort, the biosynthesis and AIP-sensing arms of the QS circuit were reconstituted together in vitro. Our experiments also reveal the molecular features guiding MroQ cleavage activity, a critical factor in defining agr specificity group identity. Collectively, our study adds to the molecular understanding of the agr response and Staphylococcus aureus virulence.


Asunto(s)
Proteínas Bacterianas , Proteínas de la Membrana , Péptido Hidrolasas , Feromonas , Percepción de Quorum , Staphylococcus aureus , Transactivadores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , Proteínas de la Membrana/fisiología , Péptido Hidrolasas/genética , Péptido Hidrolasas/fisiología , Feromonas/biosíntesis , Percepción de Quorum/genética , Staphylococcus aureus/patogenicidad , Transactivadores/genética , Transactivadores/metabolismo , Virulencia
12.
Proc Natl Acad Sci U S A ; 119(30): e2118262119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35858453

RESUMEN

Human infections with methicillin-resistant Staphylococcus aureus (MRSA) are commonly treated with vancomycin, and strains with decreased susceptibility, designated as vancomycin-intermediate S. aureus (VISA), are associated with treatment failure. Here, we profiled the phenotypic, mutational, and transcriptional landscape of 10 VISA strains adapted by laboratory evolution from one common MRSA ancestor, the USA300 strain JE2. Using functional and independent component analysis, we found that: 1) despite the common genetic background and environmental conditions, the mutational landscape diverged between evolved strains and included mutations previously associated with vancomycin resistance (in vraT, graS, vraFG, walKR, and rpoBCD) as well as novel adaptive mutations (SAUSA300_RS04225, ssaA, pitAR, and sagB); 2) the first wave of mutations affected transcriptional regulators and the second affected genes involved in membrane biosynthesis; 3) expression profiles were predominantly strain-specific except for sceD and lukG, which were the only two genes significantly differentially expressed in all clones; 4) three independent virulence systems (φSa3, SaeR, and T7SS) featured as the most transcriptionally perturbed gene sets across clones; 5) there was a striking variation in oxacillin susceptibility across the evolved lineages (from a 10-fold increase to a 63-fold decrease) that also arose in clinical MRSA isolates exposed to vancomycin and correlated with susceptibility to teichoic acid inhibitors; and 6) constitutive expression of the VraR regulon explained cross-susceptibility, while mutations in walK were associated with cross-resistance. Our results show that adaptation to vancomycin involves a surprising breadth of mutational and transcriptional pathways that affect antibiotic susceptibility and possibly the clinical outcome of infections.


Asunto(s)
Antibacterianos , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Staphylococcus aureus , Resistencia a la Vancomicina , Vancomicina , Antibacterianos/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Evolución Molecular , Humanos , Staphylococcus aureus Resistente a Meticilina/metabolismo , Pruebas de Sensibilidad Microbiana , Oxacilina/química , Oxacilina/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad , Vancomicina/química , Vancomicina/farmacología , Vancomicina/uso terapéutico , Resistencia a la Vancomicina/genética , Virulencia/genética
13.
Proc Natl Acad Sci U S A ; 119(31): e2123017119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35881802

RESUMEN

Staphylococcus aureus is an opportunistic pathogen and chief among bloodstream-infecting bacteria. S. aureus produces an array of human-specific virulence factors that may contribute to immune suppression. Here, we defined the response of primary human phagocytes following infection with S. aureus using RNA-sequencing (RNA-Seq). We found that the overall transcriptional response to S. aureus was weak both in the number of genes and in the magnitude of response. Using an ex vivo bacteremia model with fresh human blood, we uncovered that infection with S. aureus resulted in the down-regulation of genes related to innate immune response and cytokine and chemokine signaling. This muted transcriptional response was conserved across diverse S. aureus clones but absent in blood exposed to heat-killed S. aureus or blood infected with the less virulent staphylococcal species Staphylococcus epidermidis. Notably, this signature was also present in patients with S. aureus bacteremia. We identified the master regulator S. aureus exoprotein expression (SaeRS) and the SaeRS-regulated pore-forming toxins as key mediators of the transcriptional suppression. The S. aureus-mediated suppression of chemokine and cytokine transcription was reflected by circulating protein levels in the plasma. Wild-type S. aureus elicited a soluble milieu that was restrictive in the recruitment of human neutrophils compared with strains lacking saeRS. Thus, S. aureus blunts the inflammatory response resulting in impaired neutrophil recruitment, which could promote the survival of the pathogen during invasive infection.


Asunto(s)
Interacciones Huésped-Patógeno , Neutrófilos , Infecciones Estafilocócicas , Staphylococcus aureus , Bacteriemia/inmunología , Bacteriemia/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Citocinas/metabolismo , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno/inmunología , Humanos , Neutrófilos/inmunología , Neutrófilos/microbiología , Proteínas Citotóxicas Formadoras de Poros/genética , Infecciones Estafilocócicas/sangre , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad , Staphylococcus epidermidis/patogenicidad , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
J Mol Biol ; 434(12): 167623, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35533763

RESUMEN

Pathogenic Staphylococcus aureus actively acquires iron from human hemoglobin (Hb) using the IsdH surface receptor. Heme extraction is mediated by a tri-domain unit within the receptor that contains its second (N2) and third (N3) NEAT domains joined by a helical linker domain. Extraction occurs within a dynamic complex, in which receptors engage each globin chain; the N2 domain tightly binds to Hb, while substantial inter-domain motions within the receptor enable its N3 domain to transiently distort the globin's heme pocket. Using molecular simulations coupled with Markov modeling, along with stopped-flow experiments to quantitatively measure heme transfer kinetics, we show that directed inter-domain motions within the receptor play a critical role in the extraction process. The directionality of N3 domain motion and the rate of heme extraction is controlled by amino acids within a short, flexible inter-domain tether that connects the N2 and linker domains. In the wild-type receptor directed motions originating from the tether enable the N3 domain to populate configurations capable of distorting Hb's pocket, whereas mutant receptors containing altered tethers are less able to adopt these conformers and capture heme slowly via indirect processes in which Hb first releases heme into the solvent. Thus, our results show inter-domain motions within the IsdH receptor play a critical role in its ability to extract heme from Hb and highlight the importance of directed motions by the short, unstructured, amino acid sequence connecting the domains in controlling the directionality and magnitude of these functionally important motions.


Asunto(s)
Antígenos Bacterianos , Hemo , Hemoglobinas , Receptores de Superficie Celular , Infecciones Estafilocócicas , Staphylococcus aureus , Antígenos Bacterianos/química , Antígenos Bacterianos/genética , Hemo/química , Hemoglobinas/química , Humanos , Simulación de Dinámica Molecular , Movimiento (Física) , Dominios Proteicos , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/patogenicidad
15.
Biomed Res Int ; 2022: 8221622, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35586806

RESUMEN

Staphylococcus aureus is a major human bacterial pathogen that carries a large number of virulence factors. Many virulence factors of S. aureus are regulated by the accessory gene regulator (agr) quorum-sensing system. Phenol-soluble modulins (PSMs) are one of the agr-mediated virulence determinants known to play a significant role in S. aureus pathogenesis. In the present study, the efficacy of thymol to inhibit PSM production including δ-toxin in S. aureus was explored. We employed liquid chromatography-mass spectrometry (LC-MS) to quantify the PSMsα1-PSMα4, PSMß1 and PSMß2, and δ-toxin production from culture supernatants. We found that thymol at 0.5 MIC (128 µg/mL) significantly reduced the PSMα and δ-toxin production in S. aureus WKZ-1, WKZ-2, LAC USA300, and ATCC29213. Downregulation in transcription by quantitative real-time (qRT) PCR analysis of response regulator agrA and receptor histidine kinase agrC upon 0.5 MIC thymol treatment affirmed the results of LC-MS quantification of PSMs. In silico molecular docking analysis demonstrated the binding affinity of thymol with receptors AgrA and AgrC. Transmission electron microscopy images revealed no ultrastructural alterations (cell wall and membrane) in thymol-treated WKZ-1 and WKZ-2 S. aureus strains. Here, we demonstrated that thymol reduces various PSM production in S. aureus clinical isolates and reference strains with mass spectrometry.


Asunto(s)
Toxinas Bacterianas , Staphylococcus aureus , Timol , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Percepción de Quorum , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/aislamiento & purificación , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidad , Timol/farmacología , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
16.
Sci Rep ; 12(1): 1971, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-35121806

RESUMEN

Various materials are used in bone tissue engineering (BTE). Graphene oxide (GO) is a good candidate for BTE due to its antibacterial activity and biocompatibility. In this study, an innovative biomaterial consists of GO, agarose and hydroxyapatite (HA) was synthesized using electrophoresis system. The characterization of the synthesized biomaterial showed that needle-like crystals with high purity were formed after 10 mA/10 h of electrophoresis treatment. Furthermore, the calcium-phosphate ratio was similar to thermodynamically stable HA. In the synthesized biomaterial with addition of 1.0 wt% of GO, the colony forming units test showed significantly less Staphylococcus aureus. Initial attachment of MC3T3-E1 cells on the synthesized biomaterial was observed which showed the safety of the synthesized biomaterial for cell viability. This study showed that the synthesized biomaterial is a promising material that can be used in BTE.


Asunto(s)
Huesos/efectos de los fármacos , Nanopartículas/química , Infecciones Estafilocócicas/tratamiento farmacológico , Ingeniería de Tejidos , Antibacterianos/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Huesos/química , Supervivencia Celular/efectos de los fármacos , Durapatita/química , Grafito/química , Humanos , Sefarosa/química , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/patogenicidad
17.
J Immunol ; 208(5): 1170-1179, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35140134

RESUMEN

Mucosa-associated invariant T (MAIT) cells recognize bacterial riboflavin metabolite Ags presented by MHC class Ib-related protein (MR1) and play important roles in immune control of microbes that synthesize riboflavin. This includes the pathobiont Staphylococcus aureus, which can also express a range of virulence factors, including the secreted toxin leukocidin ED (LukED). In this study, we found that human MAIT cells are hypersensitive to LukED-mediated lysis and lost on exposure to the toxin, leaving a T cell population devoid of MAIT cells. The cytolytic effect of LukED on MAIT cells was rapid and occurred at toxin concentrations lower than those required for toxicity against conventional T cells. Furthermore, this coincided with high MAIT cell expression of CCR5, and loss of these cells was efficiently inhibited by the CCR5 inhibitor maraviroc. Interestingly, exposure and preactivation of MAIT cells with IL-12 and IL-18, or activation via TCR triggering, partially protected from LukED toxicity. Furthermore, analysis of NK cells indicated that LukED targeted the mature cytotoxic CD57+ NK cell subset in a CCR5-independent manner. Overall, these results indicate that LukED efficiently eliminates immune cells that can respond rapidly to S. aureus in an innate fashion without the need for clonal expansion, and that MAIT cells are exceptionally vulnerable to this toxin. Thus, the findings support a model where LukED secretion may allow S. aureus to avoid recognition by the rapid cell-mediated responses mediated by MAIT cells and NK cells.


Asunto(s)
Evasión Inmune/inmunología , Células Asesinas Naturales/inmunología , Leucocidinas/metabolismo , Células T Invariantes Asociadas a Mucosa/patología , Receptores CCR5/metabolismo , Staphylococcus aureus/patogenicidad , Antagonistas de los Receptores CCR5/farmacología , Línea Celular , Humanos , Subunidad p35 de la Interleucina-12/metabolismo , Interleucina-18/metabolismo , Activación de Linfocitos/inmunología , Maraviroc/farmacología , Células T Invariantes Asociadas a Mucosa/inmunología , Infecciones Estafilocócicas/patología , Staphylococcus aureus/inmunología , Células THP-1 , Factores de Virulencia/metabolismo
18.
PLoS One ; 17(2): e0263847, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35180238

RESUMEN

BACKGROUND: The interaction between pathogenic bacteria and cholesterol crystals (CCs) has not been investigated. However, CCs are found extensively in atherosclerotic plaques and sclerotic cardiac valves. Interactions between pathogenic bacteria and CCs could provide insights into destabilization of atherosclerotic plaques and bacterial adhesion to cardiac valves. METHODS: Staphylococcus aureus and Pseudomonas aeruginosa were used to assess in vitro bacterial adhesion to CCs and proliferation in the presence of CCs compared to plastic microspheres and glass shards as controls. Ex vivo studies evaluated bacterial adhesion to atherosclerotic rabbit arteries compared to normal arteries and human atherosclerotic carotid plaques compared to normal carotid arteries. Scanning electron microscopy (SEM) was used to visualize bacterial adhesion to CCs and confocal microscopy was used to detect cholesterol binding to bacteria grown in the presence or absence of CCs. RESULTS: In vitro, S. aureus and P. aeruginosa displayed significantly greater adhesion, 36% (p<0.0001) and 89% (p<0.0001), respectively, and growth upon exposure to CCs compared to microspheres or glass shards. Rabbit and human atherosclerotic arteries contained significantly greater bacterial burdens compared to controls (4× (p<0.0004); 3× (p<0.019), respectively. SEM demonstrated that bacteria adhered and appeared to degrade CCs. Consistent with this, confocal microscopy indicated increased cholesterol bound to the bacterial cells. CONCLUSIONS: This study is the first to demonstrate an interaction between bacteria and CCs showing that bacteria dissolve and bind to CCs. This interaction helps to elucidate adhesion of bacteria to sclerotic valves and atherosclerotic plaques that may contribute to endocarditis and plaque destabilization.


Asunto(s)
Aterosclerosis/microbiología , Colesterol/metabolismo , Endocarditis/microbiología , Pseudomonas aeruginosa/patogenicidad , Staphylococcus aureus/patogenicidad , Animales , Aterosclerosis/metabolismo , Colesterol/química , Cristalización , Endocarditis/metabolismo , Humanos , Conejos
19.
Int J Mol Sci ; 23(3)2022 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-35163165

RESUMEN

Recently, the drawbacks arising from the overuse of antibiotics have drawn growing public attention. Among them, drug-resistance (DR) and even multidrug-resistance (MDR) pose significant challenges in clinical practice. As a representative of a DR or MDR pathogen, Staphylococcus aureus can cause diversity of infections related to different organs, and can survive or adapt to the diverse hostile environments by switching into other phenotypes, including biofilm and small colony variants (SCVs), with altered physiologic or metabolic characteristics. In this review, we briefly describe the development of the DR/MDR as well as the classical mechanisms (accumulation of the resistant genes). Moreover, we use multidimensional scaling analysis to evaluate the MDR relevant hotspots in the recent published reports. Furthermore, we mainly focus on the possible non-classical resistance mechanisms triggered by the two important alternative phenotypes of the S. aureus, biofilm and SCVs, which are fundamentally caused by the different global regulation of the S. aureus population, such as the main quorum-sensing (QS) and agr system and its coordinated regulated factors, such as the SarA family proteins and the alternative sigma factor σB (SigB). Both the biofilm and the SCVs are able to escape from the host immune response, and resist the therapeutic effects of antibiotics through the physical or the biological barriers, and become less sensitive to some antibiotics by the dormant state with the limited metabolisms.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Farmacorresistencia Bacteriana/genética , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Animales , Proteínas Bacterianas/genética , Biopelículas/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica , Humanos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/patogenicidad
20.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35165181

RESUMEN

Staphylococcus aureus is a foremost bacterial pathogen responsible for a vast array of human diseases. Staphylococcal superantigens (SAgs) constitute a family of exotoxins from S. aureus that bind directly to major histocompatibility complex (MHC) class II and T cell receptors to drive extensive T cell activation and cytokine release. Although these toxins have been implicated in serious disease, including toxic shock syndrome, the specific pathological mechanisms remain unclear. Herein, we aimed to elucidate how SAgs contribute to pathogenesis during bloodstream infections and utilized transgenic mice encoding human MHC class II to render mice susceptible to SAg activity. We demonstrate that SAgs contribute to S. aureus bacteremia by massively increasing bacterial burden in the liver, and this was mediated by CD4+ T cells that produced interferon gamma (IFN-γ) to high levels in a SAg-dependent manner. Bacterial burdens were reduced by blocking IFN-γ, phenocopying SAg-deletion mutant strains, and inhibiting a proinflammatory response. Infection kinetics and flow cytometry analyses suggested that this was a macrophage-driven mechanism, which was confirmed through macrophage-depletion experiments. Experiments in human cells demonstrated that excessive IFN-γ allowed S. aureus to replicate efficiently within macrophages. This indicates that SAgs promote bacterial survival by manipulating the immune response to inhibit effective clearing of S. aureus Altogether, this work implicates SAg toxins as critical therapeutic targets for preventing persistent or severe S. aureus disease.


Asunto(s)
Interferón gamma/inmunología , Infecciones Estafilocócicas/inmunología , Superantígenos/inmunología , Animales , Bacteriemia , Enterotoxinas/inmunología , Exotoxinas/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Humanos , Interferón gamma/metabolismo , Activación de Linfocitos/inmunología , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores de Antígenos de Linfocitos T/inmunología , Staphylococcus aureus/patogenicidad , Linfocitos T/inmunología , Factores de Virulencia/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...